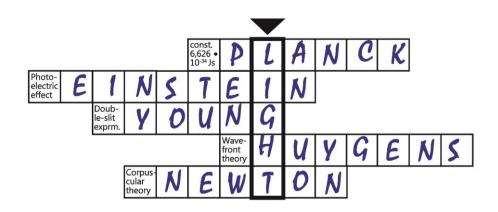


研究生职业生涯规划书

――追・光・人

参赛者

浙江大学光电信息工程学系 博士研究生 赵鼎

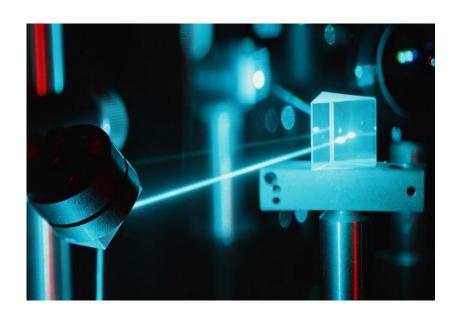

指导教师

浙江大学光电信息工程学系 刘玉玲 冯萍

每个人的诞生如同一颗未知粒子,一开始并不知道自己的能量有多少,甚至能否发光。有人拼命奔跑积攒着能量,一路加速、光芒四射;有人慢慢吞吞、原地打转,零零星星闪烁着;也有人瞄准一个方向,倾尽自己所有的能量将其照亮……

不过有一点大家都一样,无论你跑得多快,你始终无法超越光速,让时光静止或者倒流,因而终究会在某时某刻告别这个世界。

看了这样悲观的表述,你是否会突然有种危机感。 是否想过,"人"这一生究竟在"追"着什么、拼命 发着"光"又为了照亮什么?而我,在这几页纸中, 找到了属于自己的答案。



我的理想职业:

高校教师——基于高校平台,打造具有国际顶尖水平的研究团队,推动科研成果产品化、产业化;同时,在此期间为国家培养一批"能担大任,主持风气,转移国运的领导人才"

To-Be The Next-Hero!

P.01 "我"

光源——光的起点	P.02-08 自我认知
----------	--------------

光线——光的传播 P.09-12 职业认知

透镜——光的会聚 P.13-16 职业决策

光纤——光路引导 P.17-18 计划路径

支架——光路调整 P.19-20 监控调整

2011 - 至今

免试直接攻读博士学位/纳米光子学方向

2007 – 2011

保送进入浙江大学/光电信息工程学系

Survive Surviv

E-mail: zhaoding@zju.edu.cn

获奖情况	
2011 – 至今	博士研究生国家奖学金,第七届纳米光子学国际会议最佳学生论文奖, 浙江大学优秀共产党员
2007 – 2011	浙江省优秀毕业生,浙江大学优秀学生一、二等奖学金,浙江大学三好学生、浙江大学优秀团干部、优秀学生干部
	字生、浙江人字优秀团十部、优秀字生十部

学术论文

3 (13 = 1				
1. <u>D Zhao</u> , H Gong, Y Yang, Q Li, M Qiu, Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures, Appl. Phys. Lett., 102 (20), 201109				
2. <u>D Zhao</u> , L Meng, H Gong, X Chen, Y Chen, M Yan, Q Li, M Qiu, Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina, Appl. Phys. Lett., <i>In press</i>				
3. S Dai*, <u>D Zhao</u> *, Q Li, M Qiu, Double-sided polarization-independent plasmonic absorber at near-infrared region, Opt. Express 21 (11), 13125-13133	并列一作			
4. W Wang*, <u>D Zhao</u> *, Y Chen, H Gong, X Chen, S Dai, Y Yang, Q Li, M Qiu, Grating-assisted enhanced optical transmission through a seamless gold film, Opt. Express 22 (5), 5416-5421				
5. L Meng, <u>D Zhao</u> , Z Ruan, Q Li, Y Yang, M Qiu, Optimized grating as an ultra-narrow band absorber or plasmonic sensor, Opt. Lett. 39 (5), 1137-1140				
6. L Meng, <u>D Zhao</u> , Q Li, M Qiu, Polarization-sensitive perfect absorbers at near-infrared wavelengths, Opt. Express 21 (101), A111-A122				
7. Y Yang, <u>D Zhao</u> , H Gong, Q Li, M Qiu, Plasmonic sectoral horn nanoantennas, Opt. Lett. 39 (11), 3204-3207				
8. Q Li, W Zhang, <u>D Zhao</u> , M Qiu, Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles, Plasmonics 9 (3), 623-630				
9. X Chen, H Gong, S Dai, <u>D Zhao</u> , Y Yang, Q Li, M Qiu, Near-infrared broadband absorber with film-coupled multilayer nanorods, Opt. Lett. 38 (13), 2247-2249				

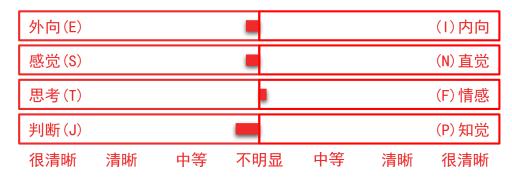
社会工作

2010.9 - 至今	共青团浙江大学光电信息工程学系委员会	团委副书记(挂职)	
	• 主要负责全系基层团支部组织事务		
2009.6 - 2010.6	浙江大学光电信息工程学系学生会	学生会主席	
	• 引领全系范围启动实施"光电文化发展工程"		
	• 协办"浙江大学第二届光电设计竞赛"		

交流实践

2010.5	南京大学2010年高校高峰论坛			
	• 代表浙江大学学生会参加"我与青奥共成长"高校高峰论坛			
2009.7	浙江大学光电信息工程学系赴江苏吴江暑期社会实践			
	• 浙江大学暑期社会实践优秀团队(队长),光电企业调研			

自我评价: 乐观开朗、勤恳踏实、热衷合作、追求卓越


光源——光的起点 自我认知

物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线、X光线等不可见光)的物体。凡物体本身能发光者,称作光源。如太阳、恒星、灯以及燃烧着的物质等都是光源。但像月亮表面、桌面等依靠它们反射外来光才能使人们看到它们,这样的反射物体不能称为光源。

我,是哪类光源?

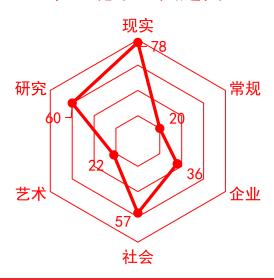
1.1. 职业性格

职业性格特征分布图

■ ESFJ类型——主人型,热情主动地帮别人把事情做好

- 非常**重视与别人的关系**,容易觉察出他人的需要,并善于给他人实际关怀,待人友好、 有很强的责任心。看到周围的人舒适和快乐,自己也会感到快乐和满足。
- 热情,有活力,乐于合作,有同情心,机敏圆滑。希望得到别人的赞同和鼓励,冷淡和不友善会造成伤害。需要和睦的人际关系,对于批评和漠视非常敏感。
- **很实际、有条理**,做事彻底,有一致性,对细节和事实有出色的记忆力,并且希望别 人也如此。总是着眼于目前,在经验和事实之上做出决策,将事情安排妥当。
- 喜欢组织众人和控制形势,愿意与他人合力按时圆满地完成任务。忠于自己的职责, 并愿意超出自己的责任范围,做一些对别人有帮助或有益处的事情。

■ 优势


- **通情达理**,总能找到与别人既有效又 友好的合作方式;
- 善善善等于记住并利用各种事实来处理细节问题,看问题的角度总是基于现实;
- 组织能力很强,组织活动灵活高效:
- **忠于自己所在的集体**,用行动来维护 集体的价值观念和原则;
- 认真、勤奋、高效,**有非常强的责任 意识**,言出必行。

■ 劣势

- 过于热情或强势以至于给予别人额外的关心和帮助,或侵占了别人的空间;
- 因为过于关注别人的需要而忽视自己 内心的需求,**难以说"不"**;
- 相当敏感,做事总是希望得到别人的 鼓励和赞赏,担心被忽视,不愿接受 批评,很容易引发沮丧和郁闷;
- **难于适应新情况**,在不同工作任务之 间来回切换有时会感到困难。

1.2. 职业兴趣

霍兰德职业兴趣图

■ 最强兴趣——现实型、研究型、社会型

兴趣类型	特点	最热衷的事情	最讨厌的事情
现实型(78)	手脚灵活,擅操作,爱 运动	摆弄机器或工具	大型社交活动
研究型(60)	理性、精确,求知欲、 思维力强	复杂的推理论证	游说别人
社会型(57)	爱结交,重人脉,乐于 助人	其乐融融地和别人 打成一片	独自操作机器或工 具

■ 特点

- 当把精力投入物质材料或者抽象理念的活动中时,诸如操作、手工制作以及运算、理论分析等,甚至可以达到一种忘我的境界;
- 十分务实,脚踏实地,**信奉"实践出 真知"的信条**,不太喜欢仓促地做决 定,希望在明确、固定的环境中,有 充分的亲身活动来获取经验;
- 酷爱钻研,好奇心旺盛,分析力强,坚 持不懈,独立自信,不喜欢被约束但能 很好地自律,是积极的行动者。
- ✓ 使你如鱼得水的环境:明确、稳定、 比较宽松自主的氛围,研究性和技术 性的人或事的环境。
- ✓ 你可能喜欢的职业有:工程师、建筑、科技人员、实验研究人员。

1.3. 职业技能

5 项最擅长的职业技能

(从左到右、从上到下 依擅长程度高低排序)

通过书面方 式,有效传达信 息、表达观点

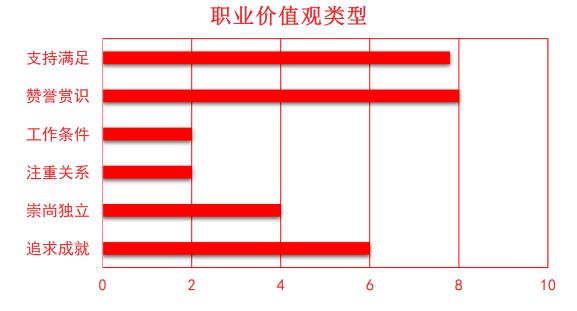
注意倾听他人说 话,充分理解要 点,适当提问, 不随意打断

按照规范安装设 备、机器、配线 或程序

利用科学的规则 和方法(对比、 分类、演绎、归 纳等)解决问题

学习新知识,并 能很快运用新知 识

测试检查产品、 服务或流程,评 估其质量或性能



有效安排并管理 自己的时间和他 人的时间

有效地口头传达 信息或观点 **3** 项**最薄弱**的职业技能 (从左到右、从上到下 依薄弱程度强弱排序)

1.4. 职业价值观

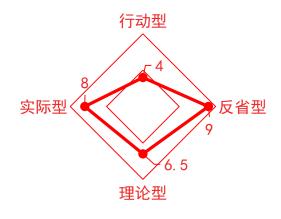
职业价值观指的是,无论从事什么工作,都会努力在工作中追求的东西。从某种角度,可以认为,工作价值观就是在**工作中最期待获得的东西。**

■ 最突出的职业价值观——赞誉赏识、支持满足

- ✓ **赞誉赏识(8.0)**: 对职业的追求,是能够使自己获得充分的领导力提升机会,并拥有充分的权威,能够对他人的工作提供指导,并且这个职位是富有社会声望的。
- ✓ 支持满足(7.8): 期望在职业中,获得管理层的支持,比如获得充分的培训机会, 能够在单位的规定范畴内获得应有的待遇。

■ 其他职业价值观

- **追求成就(6.0)**:希望获得的工作,是能够看到及时的成果展现,并体验到可能的成就体验。即工作的追求是一种自我实现,而并非外在特质利益的满足。
- **崇尚独立(4.0)**: 期望在工作中能够独立工作、独立决策,而且能够表现出自己的创新,发挥自己的责任感、自主性。能够以自我监督的形式使自己的工作按照自己的计划顺利进行。
- **注重关系(2.0)**: 期望工作的内容是能够给予别人帮助,并希望在这样的职位上同事之间关系融洽,大家都有积极的道德观念和社会服务意识。
- 工作条件(2.0):希望获得有充分保障的工作(包括拥有良好的工作条件)。


1.5. 学习风格

兴趣类型	分值	等级	描述
行动型	4	D	低偏好
反省型	9	Α	非常强烈的偏好
理论型	6.5	В	强烈偏好
实际型	8	А	非常强烈的偏好

■ 最突出的学习风格——反省型

- ✓ 反省型学习者在下列活动中学习效果最佳:
- 要求或鼓励进行观察和思考;
- 不要求或允许非直接碰撞的学习方式,比如在一旁倾听、观察;
- 事前有时间准备,比如在行动前思考,在发表观点前综合别人的意见,有机会事先 阅读介绍背景情况的简要资料等等;
- 能够进行艰苦的研究,调查、汇总信息、探索真相;
- 有机会能复习和回顾经过和所学到的东西;
- 要求提交谨慎思考过的分析和报告;
- 平等地与他人交流,没有事先约定和没有结构化学习经验的束缚;
- 在没有压力及紧张期限的情况下思考,得出结论。

学习风格坐标图

× 反省型学习者在下列活动中学习效果最差:

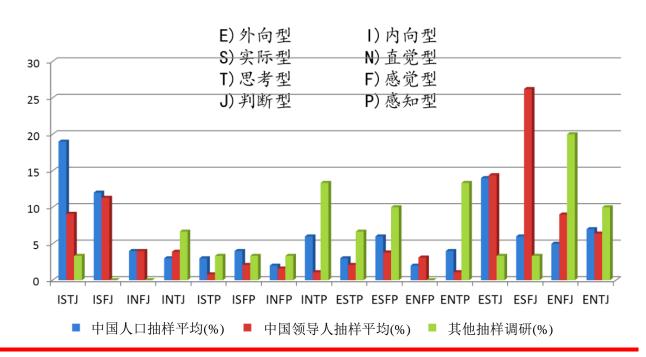
- 被迫抛头露面,充当组织者、领导者,或在 别人面前角色扮演;
- 卷入一些未经计划而需要马上进行的紧迫情况。在未经提醒的情况下投入某项工作,要求当即立断和即兴想法。
- 提供的数据不足以支持结论。
- 提供的指导死板沉闷。
- 较大的时间压力或在不同的活动之间奔忙, 为了出结果而不得不走捷径或做表面文章。

1.6. 综合分析

■ 基于个人兴趣

- ✓ 我的兴趣:探索新鲜事物,了解和研究事物发展规律,并从实际出发考虑其应用可能性及价值。同时,喜欢结交和分享,注重带领和带动他人一起进步。
- ✓ 从个人兴趣出发,我所喜好的工作:探 索知识、创造知识、分享知识、传播知识。

■ 基于成长经历

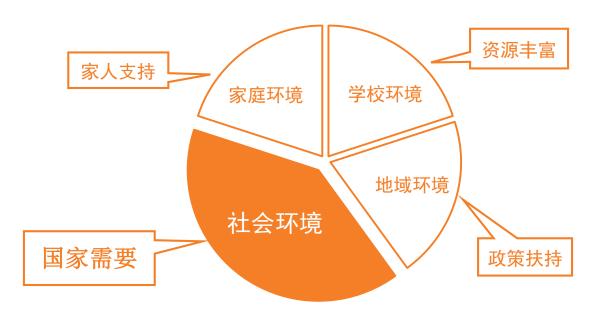

- ✓ 本科4年的学生工作经历使我乐于并善于和学生打成一片,自身具备比较强的领导和执行能力,能够提前合理规划,分配和整合资源,顺利完成既定任务。
- ✓ 研究生3年的科研历练促使我完成了转型发展,再次找到兴趣与工作的结合点——微纳光子学研究,并乐此不疲。

■ 基于周围人的评价

- ✓ 学习、生活和工作中,周围人对我的 评价可以概括如下:
- ✓ 优点:稳重踏实、友好热情、认真负责、非常靠谱。
- ✓ 缺点:不爱闲谈,过于实际、缺乏情调,不懂得拒绝别人。

■ 综合评估

- ✓ 依据评测结果,我的性格特质倾向于 外向、实际、感觉、判断的**ESFJ**类 型。同时,从我的兴趣爱好、成长经 历、周围评价等方面也得以印证。
- ✓ 结合下表"中国领导人"调研数据与职业性格测试常规结论,可见偏向实际型(S)、判断型(J)人格的人更容易成为团队的领导者,这也与我自己的性格特质和职业规划相符合。


光线——光的传播 职业认知

在几何光学中,通常不把光看做电磁波,而看作 为光能量传播方向的几何线,这种几何线称为光线。

光线是表示光的传播方向的直线,光线是一种几何的抽象,在实际当中不可能得到一条光线。

我,能照亮哪里?

2.1. 环境分析

分析和了解自己的家庭环境、学校环境、地域环境和社会环境,以便找到最适合自己的发展方向。

■ 社会环境

"国家的需要就是我的专业" ——力学之父钱伟长

- ✓ 《国家中长期人才发展规划纲要 (2010-2020年)》强调指出国家对 于"创新型科技人才"的需求,将 "围绕提高自主创新能力、建设创 新型国家,以高层次创新型科技人 才为重点,努力造就一批世界水 平的科学家、科技领军人才、 工程师和高水平创新团队"。
- ✓ 身为求是学子,应该勇于成为具有 国际视野的高素质创新人才和未来 领导者。积极将个人的命运和国家 的命运结合起来,即"国家的需 要就是我的职业"。

■ 家庭环境

✓ 父母工作相对稳定,非常开明,从小培养我独立意识和能力,尊重和**支持我的** 决定和选择。

■ 学校环境

✓ 浙江大学作为国内顶尖的以工科见长的 高校,科研经费充足、政府支持拨款, 拥有丰厚的科研资源储备和广阔的实验 研究平台。

■ 地域环境

✓ 大力发展高新技术产业,打造"天堂 硅谷",是杭州市委、市政府立足杭 州优势,面向未来发展作出的重大战 略部署,目前成绩显著,未来更加可 以期待。

2.2. 目标职业分析

纳米光子学研究方向职业去向

	高校教师	研究所研究员	企业工程师
工作内容	科研兼授课	专注科研	以应用为目的研发
工作环境	高等院校,师生朋辈 关系鲜明	研究所 ,雇佣关系非 常突出	大型公司企业,国 内数量不多
工作时间	相对灵活自由,享有 寒暑假	较为严格,部分享有 寒暑假	固定时间上下班, 无寒暑假
胜任条件	博士学历,海外留学 经历,高水平(高影 响因子或高引用次数) 期刊文章	博士学历,海外留学 经历,高水平(高影 响因子或高引用次数) 期刊文章	硕士及以上学历, 具备独立开展科研 工作的能力
发展空间	纳米技术及产业蓬勃 发展,国家政策大力 支持,科研经费充足	纳米技术及产业蓬勃 发展,国家政策大力 支持,科研经费充足	国家支持,存在大 量潜在的市场需求, 行业前景广阔
工资待遇	基本月工资1万元左右	年薪15万元左右	年薪20万元以上

选择高校? 或者研究所? 还是公司?

■ 对比

- ✓ 高校和研究所在科研方面的**研究内容和手 段更为前沿**
- ✓ 从上表对比不难发现,高校教授和研究所研究员的各项指标都非常接近,除了教书育人的工作内容以及相对灵活的工作时间。
- ✓ 对于相关公司企业的技术研发人员,在国内目前还处于探索初期。某些公司虽然招聘了具有博士学历的工作人员,**真正的利用率** 却并不高,无法达到预期效果。

2.3. 职业人物访谈

■ 访谈对象(图右): 仇旻教授

30岁荣获瑞典战略研究基金委员会颁发的"未来科研带头人"个人基金,2010年入选第四批"国家千人计划",国家杰出青年科学基金获得者,现担任浙江大学现代光学仪器国家重点实验室副主任。主持研发多项新型微纳器件的制造工艺、微纳光电子器件设计、人工电磁光学材料项目。已在国际杂志上发表论文共计160余篇,SCI论文他引总计超过3500次。

■ 国内外纳米领域科研条件的差异大吗?

✓ 近年来纳米技术研究领域不断取得重大进展。其中不乏来自国内研究小组的原创性和突破性工作。比如清华、北大、中科院以及浙大,都有很多漂亮的工作。随着国家科研经费投入的不断增加,就基础科研条件设施而言,国内的一些实验室已达国际先进水平,甚至超过了某些国外学校。

■ **30**岁你就获得了"未来科研带头人"大奖,你认为成功的因素包括哪些?

✓ 最最重要的一点,就是我原有的科研成果,发表的文章质量和数量,都是比较高的。 其次是,我有比较好的国际合作经历,跟美英德法等国的研究小组都有比较密切的合作,这是评奖委员会比较看重的一点。另外,我也参与了一家光通信公司的创建,进行研究成果的产品转化。最后,我的英语口语很不错,善于言辞表达。如果没有这个优势,面试时我可能就被刷下了。记住,工作做得好且要让人知道是一门艺术。

■ 对以后有志于投身高校教学科研的研究生有何建议?

✓ 做好每一天的事情。还有几点建议:一是开拓自己的视野,不要局限于自己的领域;二是尊重师长(这里的师长不仅包括导师,也包括业界权威和专业书籍),但不需要完全服从他们。在接受知识时要倾向于质询和探讨;三是向外国学生学习,把学习当作享受而不是负担。四是要坚持不懈,沉得住气。

透镜——光的会聚 职业决策

透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。

当一束平行于主光轴的光线通过凸透镜后相交于一点,这个点称"焦点"。凸透镜具有会聚光线的作用,所以也叫"会聚透镜"、"正透镜"。

我,将照向哪里?

3.1. 职业决策模型

模型构建

✓ 基于对有效职业决策的基础以及职业决策困难的分析,参考已有的职业决策模型, 按照两个阶段(预期阶段、尝试与适应阶段)和七个步骤构建职业决策模型。

预期阶段

- 界定决策者的主要问题。个体对自我 1. 认知进行详细了解, 对外部环境信息 进行理性认识:
- 测评。 采用当前流行的 MBTI 人格问 卷进行初步施测, 决策者可以清晰地 认识自己的职业人格特点;

"自我认知"过程 ESFJ类型、外向、实际、感觉、

- 3. 产生各种可供选择并且可行的问题解 决方案;
- 进一步收集资料, 对形成的方案进行 4. 审视, 并进行量化明确最优项, 形成

"职业认知"过程 教授、研究员、工程师

"职业决策" 相应的初步行动计划。

尝试与适应阶段

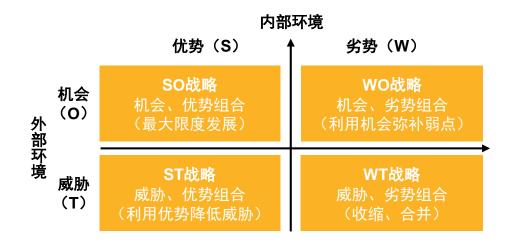
- 开始执行自己的选择, 在新环境中, 争取适应该项工作并得到他人的接 纳:
- "计划执行" 过程
- 调整状态, 专心一致, 全力以卦: 6.
- 整合,个体的信念与集体的主流信念 达到平衡与妥协。

"监控调整"

3.2. 职业决策平衡表

平衡单是列出决策者的多个选项,就各影响因素对选项进行逐一分析和评分,最后计算各备选项的因素总分,分数高的就是决策者的优先选择,可以以此决策。

✓ 个人职业价值观: 赞誉赏识、支持满足


影响因素	高校教师		研究员		工程师	
	分数	小计	分数	小计	分数	小计
1. 社会认同和社会地位 ×3.0	3.0	9.0	2.5	7.5	2.0	6.0
2. 家人认同感和荣誉感 ×2.5	3.0	7.5	3.0	7.5	2.0	5.0
3. 自我价值实现成就感 ※2.0	3.0	6.0	3.0	6.0	2.5	5.0
4. 工作时间、生活质量 ×1.5	3.0	4.5	2.0	3.0	1.0	1.5
5. 工作氛围、能力发挥 ×1.5	3.0	4.5	2.0	3.0	1.0	1.5
6. 薪资待遇×1.0	2.0	2.0	2.5	2.5	3.0	3.0
合计	33	.5	29	.5	22	2

■ 职业决策

- ✓ 在个人职业兴趣的基础上,列出三项备选职业目标,即高校教师、研究所研究员和 企业工程师。
- ✓ 从个人职业价值观的角度出发,着重列出影响职业选择的具体因素,即社会认同和社会地,家人认同感和荣誉感,自我价值实现成就感,工作时间、生活质量,工作氛围、能力发挥,薪资待遇。其中,1和2属于赞誉赏识范畴,主要关注社会和周围人的认同感,也是我最看重的部分,权重最高。3-6属于支持满足范畴,包括自我精神层面和物质层面的满足,权重不及前一部分。
- ✓ 平衡表结果非常明确,在最终职业选择上,我更倾向于高校教师。

3.3. 个人SWOT分析

SWOT分析是经常用到的分析工具: S代表strength(优势),W代表weakness(弱势),O代表opportunity(机会),T代表threat(威胁)。利用SWOT分析方法进行自我剖析和挖掘,可以清楚明了地掌握个人现状、全面分析自己。

■ 内部环境分析

- ✓ 优势:做事认真踏实、富有极强的责任心、热衷于探索新鲜事物;书面表达能力、逻辑思维较强。
- × 劣势: 做决定不够果断、时常犹豫; 工作、学习有时偏向于保守; 口头表 达、时间管理能力有待提高。

■ 外部环境分析

- ✓ 机会:国家非常重视高科技人才培养; 就读于国内顶尖高校,资源丰富、平台 广阔;研究小组部分科研成果处于国际 领先水平。
- × 威胁: 政策改变(海外留学经历以及发表高水平期刊文章);国际化竞争面临更多挑战。

■ SWOT策略分析

- ✓ SO战略:珍惜时间、珍惜资源,努力 学习,开拓视野,培养、保持高度的 科研敏感性。
- ✓ ST战略:不断提升科研能力和领导能力,同时争取国内外合作,发表更高质量和更多数量论文。
- ✓ WO战略:积极参加尝试锻炼,提高 自己教书育人、传道授业的本领。
- ✓ WT战略:广泛交流,增强沟通能力,提高自信心,铺建良好的人际关系网络。

总结起来,即加强专业学习、 多方尝试锻炼、提升领导能力、注 重合作分享。

光纤——光路引导 计划路径

光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。传输原理是"光的全反射"。

微细的光纤封装在塑料护套中,使得它能够弯曲 而不至于断裂。通常,光纤的一端的发射装置使用发 光二极管或一束激光将光脉冲传送至光纤,光纤的另 一端的接收装置使用光敏元件检测脉冲。

我,将如何高效发光?

4. 职业发展路径

确立目标和发展路径

✓ 我的职业生涯规划总目标是基于高校平台,打造、引领具有国际顶尖水平的科研 团队,研制能够推动社会生产力发展的尖端设备,推动科研成果的产品化、产业 化;并在此期间为国家培养一批"公忠坚毅,能够担当大任、转移风尚、主持国 运的领导人才"。

■ 短期行动计划 (2014-2016)

2007年,我有幸提前半年开始了大 学生活。本着一份热情和真诚, 我把绝 大部分课余时间献给了自己热爱的学生 工作, 甚至曾经以为会就此走上辅导员 道路。

2011年, 我选择了本校直博。面 对相对陌生的选择和挑战, 当时还有些 惶恐。秉承着做事的热情和激情,一路 走来, 我发现并没有想象中的艰难, 其 至还取得了一些成绩。更重要的是自己 再次找到了**兴趣的落脚点**。剩下的博士 生涯, 我希望继续夯实专业基础, 开阔 视野,提升自主科研能力。

中长期行动计划(2016-)

- ✔ 博士后海外(斯坦福大学)留学
- ✔ 回国(母校浙江大学)任教
- ✔ 研究成果产业化(寻求企业合作,组织 科研团队为其提供技术支持)
- ✓ 培养一批具有国际视野的光学领域高层 次人才

2014-2016 研制全球独一 无二拥有自主 知识产权的新 型纳米制造和 物性测量设备 ■ 发表第一作 者论文,国 际会议获奖

■ 并列第一作 者发表论文

Double-sided p plasmonic abso region

Optics Express, Vol. 21, Issue 11, pp. 13125-http://dx.doi.org/10.1364/OE.21.013125

2013

2012

- 中科院物理所 学习交流
- 合作发表本组 第一篇论文

2011

Prof. Qiu's Group

保持清醒的头脑, 带着不竭的热情和激情,出发!

光路调整 监控调整

光学系统中往往离不开三维调节架的帮助。它的 主要作用就是能稳定光路、调节改变光学元件位置, 以达到既定实验目标。

我,能如愿以偿吗?

5. 职业评估和调整

■ 动态评估调整

✓ 职业生涯规划是一个动态的过程,必须根据实施结果的情况以及变化情况进行及时的评估与修正。

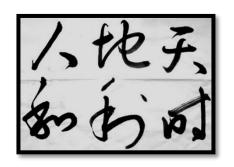
■ 职业目标评估

✓ 根据对自我能力、自我兴趣的不断深入 的了解,及时调整自己的职业方向,以 求找到自己喜欢,也最适合自己的工作 岗位。

■ 评估时间

✓ 一般情况下,以半年为周期进行自我评估规划,总结现阶段成果以及和最终目标的距离。如若出现特殊情况,随时进行相应调整。

■ 评估和调整原则


✓ 基本原则:着眼实际、长远考虑,因时 而动、随机应变

■ 备选职业目标

✓ 倘若理想职业目标的实现异常艰难,无 法顺利进入一流高校任教,我会选择去 研究所从事一些研发以及技术推广相关 工作,从另一个角度满足自己"探索知 识、传播知识"的愿望。

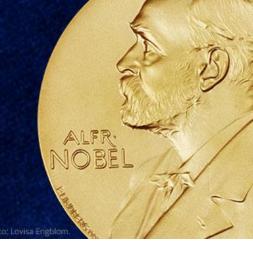
■ 职业路径评估

- ✓ 我的职业生涯规划总目标是引领具有国际顶尖水平的科研团队,研制能够推动社会生产力发展的尖端设备;并在此期间为国家培养一批"公忠坚毅,能够担当大任、转移风尚、主持国运的领导人才"。可以分为两步走:
- 第一步,利用研究所、课题组内资源, 夯实独立科研能力,同时提高沟通合作 能力,广泛建立国内外技术合作网络;
- 第二步,在成果积累、技术手段较为成熟等条件(尤其是"天时"、"地利"、"人和")合适的情况下,寻求企业合作,推动科研成果产品化、产业化——组织科研团队为其提供技术支持。
- ✓ 在职业生涯的发展过程中,我会随时考察政治和经济政策、合作网络的构建情况、团队的组建及成果积累情况,评估实现目标的可能性。如果可能性非常低,我会适当调整自己的职业生涯规划,但始终朝着最终目标逼近。

曾经看过一篇文章,里面有几段话给我留下了非常深刻的印象;"20 多岁,你迷茫又着急。你想要房子想要汽车,你想要旅行想要享受生活。 你那么年轻却窥觑整个世界,你那么浮躁却想要看透生活。"

20多岁,当我还在谈做实验、发文章的时候,许多同龄人却在讨论着房价和奶粉。是的,我开始动摇了。质疑当初的选择,怀疑自己是不是"落后"了。尤其是今年父亲突然查出重病。我在医院陪护的那几天,我不停地责问自己,我是不是当初真的该去工作,或许现在已经拥有一个家庭,甚至生儿育女,至少能让父母的心里感到踏实。可是,我现在,还只是一名"在校求学的研究生"。

一直以来有种"奇怪"的现象:绝大多数的研究生都认为自己根本不需要职业生涯规划,在他们看来计划赶不上变化。可事实上,并非如此。职业生涯规划比赛的全程参与,让身为高年级博士生的我擦亮了惺忪的眼睛。它教会我如何系统全面地把握未来职业发展的方向,让我学会从更高的层次、用更长远的目光审视自己的人生之路,让我有勇气说出自己的理想并有条不紊地为之奋斗。


于是,现在的我更加明确了自己的目标以及近期的行动计划;于是, 我现在看问题、想问题不再计较眼前的利益得失;于是的于是,我发现我 与理想的距离,越来越近。

感谢职业生涯规划,让我不再是"迷茫的研究生"中的一员。

2014年10月 于求是园

Isamu Akasaki Hiroshi Amano Shuji Nakamura

"for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources"

研究生职业生涯规划——

追・光・人

light connects